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In this paper we propose a simple model that, by comparing different time scales,
allows a prediction for the mean flow structure and its dynamics in confined thermal
convection in a cylindrical cell of aspect ratio (diameter over cell height) Γ = 1/2. It is
shown that the break-up of the mean elongated recirculation into two counter-rotating
unity-aspect-ratio rolls, sometimes referred to as flow bimodality, occurs only in a
narrow range of Rayleigh numbers whose extrema depend on the Prandtl number.
The predictions of the present model are consistent with the published literature,
according to which the dual mean flow structure has been observed in numerical
simulations at Pr = 0.7 and experiments in gaseous helium (Pr ≈ 0.7) but never in
water at ‘ambient’ temperature (Pr ≈ 5) and only once in water at T =80 ◦C (Pr = 2).
Another prediction of the model is that the thermal properties of the sidewall affect
the mean flow unsteadiness and, sometimes, prevent transitions via a subtle anchoring
mechanism that has been identified and verified by ad hoc numerical simulations.

1. Introduction
The long-term dynamics of thermally driven flows have recently attracted renewed

interest owing to their implications for meteorological (reversal of constant winds)
and geophysical (inversion of the Earth’s magnetic field) applications as well as
in the interpretation of some experimental measurements. It has been observed,
in particular, that the large-scale recirculation of a confined thermally driven flow
remains relatively stable in position and magnitude for hundreds or even thousands
of large-eddy turnover times and then suddenly experiences an abrupt reversal which
occurs in a time of the order of one large-eddy turnover time. An interpretation
of the causes, dynamics and statistics of the flow reversals has been given by
Sreenivasan, Bershadskii & Niemela (2002) and Araujo, Grossmann & Lohse (2005).
These papers considered a cylindrical cell of aspect ratio (diameter over cell height)
Γ = 1 since the mean flow consists of a circular unity-aspect-ratio roll completely
filling the cell. While for this configuration the structure of the mean flow and how
it behaves are relatively clear, much less is known for an equally popular geometry:
the cylindrical cell of aspect ratio Γ = 1/2. In particular, in this slender cell some
numerical simulations (Verzicco & Camussi 2003) and experiments (Roche et al.
2002) have found, respectively, two possible mean flow configurations and a flow
bimodality evidenced by two equally probable Nusselt number values for the same
Rayleigh number. However, these experiments and numerical simulations were all at
Prandtl number Pr ≈ 0.7 or higher while recent experiments performed in the same
geometry but in water at strictly constant Prandtl number (Pr ≈ 5) did not show any
transition and the mean flow consisted only of a stable single roll completely filling
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Figure 1. Sketch of the cell (vertical plane cut).

the cell (Nikolaenko et al. 2005; Sun, Xi & Xia 2005). On the other hand, in a recent
experiment (Chillà et al. 2004) performed in a large cell with water at T = 80 ◦C
(Pr ≈ 2), indications of flow bimodality have been reported. Within this scenario,
some experimentalists ‘deliberately do not use an aspect ratio close to Γ = 1/2 in an
effort to avoid the multi-stability’ mean flow structure (Brown et al. 2005b).

In the present paper we argue that a combination of Rayleigh and Prandtl number
effects and sidewall thermal properties are the cause of the observed differences. We
present simple theoretical arguments for the proposed explanation that will allow a
consistent reinterpretation of the published literature. We will then show the results of
numerical simulations that confirm the theoretical expectations. The paper is closed
by a discussion of some controversial results for the mean flow structure (Verzicco &
Camussi 2003; Roche et al. 2002; Nikolaenko et al. 2005; Sun et al. 2005) and
for heat transfer measurements (Chavanne et al. 2001; Niemela et al. 2000) whose
differences can be explained in the light of the present model.

2. Problem and numerical setup
In this paper we numerically simulate the flow developing in a cylindrical cell

vertically confined by flat plates, the lower being hotter than the upper (respectively
at temperatures Th and Tc). The flow is bounded laterally by a sidewall of thickness c

and with thermal properties (denoted by subscript w) which are different from those
of the fluid (denoted by subscript f ). The lateral wall is no-slip and continuity of tem-
perature and heat flux is assumed at the interface between fluid and solid. At the ‘dry’
surface of the sidewall adiabatic conditions are imposed (figure 1). The numerical
code is the same as in Verzicco (2002) where details of the numerical method and
validation tests are described. In short, we solve the Navier–Stokes equations with
the Boussinesq approximation:

D u
D t

= −∇p + θ ẑ +

(
Pr

Ra

)1/2

∇2u, ∇ · u = 0 on Vf ,
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with Vf the volume occupied only by the fluid, V the volume of fluid and sidewall,
ρf , Cpf and λf with kf = λf /(ρf Cpf ), respectively, density, constant-pressure specific
heat and thermal conductivity of the fluid and ρ, C and λ the same quantities for the
fluid or the solid (ρw Cw and λw) depending on the point in the domain; ẑ is the axial
unity vector pointing in the opposite direction to gravity, u the velocity vector, p

the pressure and θ the non-dimensional temperature. The equations have been made
non-dimensional using the free-fall velocity U =

√
gαf �h, the distance between hot

and cold plates h and their temperature difference �= Th −Tc; therefore the Rayleigh
and Prandtl numbers are, respectively, Ra = gαf �h3/(νf kf ) and Pr= νf /kf with g

the acceleration due to gravity, αf the isobaric thermal expansion coefficient, νf the
kinematic viscosity and kf the thermal diffusivity of the fluid. The non-dimensional
temperature θ is defined θ = (T − Tc)/� so that 0 � θ � 1.

The above equations have been written in a cylindrical coordinate frame and
discretized on a staggered mesh by central second-order accurate finite-difference
approximations. For every simulation the mesh size was chosen in such a way that it
was of the order of the Kolmogorov scale in the bulk of the flow and that the thinnest
of the viscous and thermal boundary layers was resolved at least by 6 gridpoints. This
yielded grids ranging from 33 × 33 × 129 up to 129 × 97 × 385 nodes in the azimuthal
radial and axial directions, depending on Ra and Pr, which according to Grötzbach
(1983) provided enough spatial resolution to properly resolve the flow field. Some
additional simulations discussed are those by Verzicco & Camussi (2003) where all
the convergence checks have been performed.

3. Results
In order to better explain our arguments we will briefly describe the flow configura-

tions of figure 2, showing perspective views of temperature isosurfaces for various
Rayleigh numbers at Pr =0.7. When the Rayleigh number is small (figure 2a) the
flow is smooth and with reduced fluctuations; thus the single-cell large-scale flow
produces a stable vertical ascending hot current on one side and a descending cold
current on the opposite side. The thickness of each current is of the same order as
the thermal boundary layer thickness δθ . Hereafter, for the sake of brevity we will
always refer to the warm ascending current generated at the lower hot plate even if,
for symmetry reasons, the same arguments would apply also to the cold descending
stream generated at the upper plate. During the ascending motion the warm current
loses heat owing to diffusion and, as we will see later, whether the hot fluid reaches the
upper cold plate depends on the vertical velocity of the current and on its thickness.

As the Rayleigh number is increased the thermal boundary layer thickness decreases
and so does the thickness of the vertical currents. In addition, in agreement with the
observations of Qiu & Tong (2001), the amplitude of the velocity fluctuations becomes
comparable to that of the mean flow, thus perturbing the stability of the structures.
This is evident in figure 2(b) where the vertical currents appear convoluted and
irregular. If the Rayleigh number is further augmented there is the possibility that the
hot side current becomes so thin and convoluted that it loses all its excess heat with
respect to the ambient fluid before reaching the upper plate. Should this happen the
current cannot rise up to the upper plate and it must sink somewhere in between to
regain heat from the lower plate: when this occurs the single recirculation splits into
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(a) (b) (c)

Figure 2. Perspective views of temperature isosurfaces at Pr = 0.7: (a) Ra= 6 × 105,
(b) Ra= 2 × 108, (c) Ra= 2 × 1010. Light grey T = 0.6�, dark grey T = 0.4�.

two cells as shown in figure 2(c) where hot and cold side currents are on the same
side of the cell and they only exist for half the plate separation distance h.

Of course these dynamics and the occurrence of the different possibilities depend on
the Rayleigh and Prandtl numbers since both the ascending velocity of the current and
its thickness depend on these parameters. In order to make quantitative observations
on figure 2 we refer to the sketch of figure 3(a) showing the warm current having a
thickness � equal to the thermal boundary layer δθ and rising with a velocity U . If h is
the distance from plate to plate, the time taken for a fluid particle inside the current
to travel that distance is tU ≈ h/U while the time the same particle needs to lose its
excess heat with respect to the ambient fluid can be estimated as the diffusive time
tf ≈ �2/kf ≈ δ2

θ /kf . If however the rising current has to cross the whole cell height it
must remain buoyant during the ascent implying that tU/tf < 1. If we estimate the
velocity U as the free-fall velocity U ≈

√
gαf �h and the thermal boundary layer

thickness as δθ/h ≈ 1/(2Nu) we obtain tU/tf ≈ 4Nu2/(RaPr)1/2 which can be used
for quantitative estimates once the appropriate correlation for Nu= Nu(Ra, Pr) is
assumed. A possible flaw in the proposed model is the assumption that the diffusion
time determines the heat dynamics inside the ascending current since in a turbulent
flow the effective diffusion is enhanced with respect to the molecular value.

It must be noted, however, that in this particular geometry the vertical currents are
produced by vortex-ring-like recirculations attached to the bottom and top plates that
stretch the boundary layers radially outward at the plates and convect them vertically
along the sidewall where the flow is at most transitional. This prevents most of the
plumes from being released at the centre of the plates and evolving in the bulk where
the flow is turbulent. The situation would be completely different in a large-aspect-
ratio domain or in a rectangular tank like that in Puthenveettil & Arakeri (2005) where
the thermal plumes merge together and organize themselves into thick structures, most
of the vertical motion is within the bulk, and the turbulent diffusion certainly governs
the dynamics. In addition, if δθ/h ≈ 1/(2Nu) and η/h ∼ [Pr2/(RaNu)]1/4 with Nu ∼ Raβ
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Figure 3. (a) Sketch of the side currents arrangement, (b) sketch of the Nusselt number
dependence on the Prandtl number for a constant Rayleigh number.

then δθ ∼ Ra−β and η ∼ Ra−(1+β)/4. For β = 1/3 which is approximately correct, at least
for Pr � 0.7, the two exponents match, implying that η and δθ decrease at the same
rate with the Rayleigh number. This is confirmed by Verzicco & Camussi (2003)
who report the values η/h = 0.0185, δθ/h= 0.0163 at Ra = 2 × 107, η/h = 0.0039,
δθ/h= 0.0050 at Ra = 2 × 109 and η/h = 0.0010, δθ/h= 0.0011 at Ra = 2 × 1011. Since
η and δθ are always of the same order we have in the Γ = 1/2 cell that the thickness
of the ascending current is in the dissipative range and it is indeed governed by
molecular diffusion. We note, in passing, that this argument would hold even if the
side current were thicker since η is known to underestimate the size of the dissipative
motion by a factor two (Pope 2000) and the energy dissipation peaks at a scale of
about 10η (Monin & Yaglom 1975). At a speculative level we can also argue that
even if two or more plumes indeed merged together to form a thicker structure they
should diffuse into each other. This brings us back to the diffusive time tf , meaning,
in other words, that while merging together the plumes also lose heat to the ambient
fluid and the present model could remain valid.

Another point deserving further discussion is the assumption that the vertical
velocity of the side current is of the order of the free-fall velocity. In fact as noted by
Niemela et al. (2001) and Verzicco & Camussi (2003), respectively for cylindrical cells
of aspect ratio Γ =1 and Γ = 1/2, the mean circulation velocity is only a fraction
of U (of the order of 20 %–50 %) and this could be accounted in the model by a
numerical factor C (U ′ ≈ C

√
gαf �h). It is however also true that in order for a single

recirculation to be formed the vertical current does not need to be buoyant along
the whole height h since, owing to continuity, a neutrally buoyant part of the current
above a buoyant one would be pushed up anyway. Also, this phenomenon could be
accounted by a numerical coefficient that presumably would compensate (at least in
part) the previous one. This consideration, together with the desire to maintain the
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model free from tunable parameters, lead us to use all the arguments in their simplest
version and to test the resulting crude model against the experimental results.

According to the available literature (see for example Grossmann & Lohse 2001,
2002) it is clear that the relation between Nu, Ra and Pr is not a simple power law
and in addition the cell aspect ratio and even its shape play non-negligible roles. A
common feature is however that the Nusselt number increases monotonically with
the Rayleigh number while it increases with the Prandtl number up to a threshold
value and then saturates as sketched in figure 3(b). It should be stressed that the
real Nu(Ra, Pr) behaviour is more complex since, as shown by Grossmann & Lohse
(2001) the position of the knee and the slope of the inclined part of the Nu vs. Pr
curve depends on the Rayleigh number while the horizontal part should have a small
decrease for very large Pr which is also Ra dependent. Nevertheless, for the sake of
simplicity, we will assume a correlation Nu= ARaβ for Pr � Prth and Nu= BPrγ Raβ

for Pr <Prth keeping in mind that β , γ and Prth might possibly depend on Ra and
Pr if all the curvatures of the Nu(Ra, Pr) relation have to be retained as suggested
by Grossmann & Lohse (2001). The above correlation for Pr � Prth inserted in the
estimate for tU/tf yields

tU

tf
=

4A2Ra2β

(RaPr)1/2
, (3.1)

which gives tU/tf > 1 for either small or large Rayleigh numbers depending on
whether the exponent β is smaller or larger than 1/4 respectively. The former case
(β < 1/4) would indicate that the free-fall velocity is small and the ascending time is
too long for the current to maintain its heat. The latter case, in contrast, suggests that
the current is too thin and its heat is diffused to the ambient fluid before a particle
in the current is convected from plate to plate. Experimental and numerical evidence,
however, shows that always β > 1/4 and only the second possibility occurs in reality.
This is confirmed by the formation of large-scale circulations at very low Rayleigh
numbers after the onset of convection and, in the other extreme, by the difficulty
of distinguishing a mean motion from the background fluctuations at high Rayleigh
numbers. In the ‘low’ Prandtl number regime Pr <Prth similar arguments apply and
the appropriate Nu(Ra, Pr) estimate inserted in the tU/tf formula gives

tU

tf
=

4B2Pr2γ Ra2β

(RaPr)1/2
. (3.2)

Both (3.1) and (3.2) give a ratio tU/tf which increases with Ra and eventually crosses
the boundary tU/tf = 1; this determines a threshold Rayleigh number Rath above
which a single recirculation spanning the whole cell height cannot be supported by
the system. If however we allow the single elongated cell to split into two unity-aspect-
ratio cells, the ascending current will have to travel only a reduced distance h′ = h/2
which in turn will give a shorter convection time t ′

U = h′/U , a new ratio t ′
U/tf and an

augmented threshold Ra′
th. The complete behaviour of the system is summarized in

figure 4 where the position of the intersections C and D depends on the values of the
various flow (Pr) and correlation (A, B, γ, β) parameters.

In particular, figure 4 suggests that a single elongated roll can be found in the system
only up to Ra = RaC while the two-rolls mean flow can exist up to Ra =RaD and it
is the only possible configuration in the range RaC � Ra � RaD . Figure 4 implies
also that for Ra � RaC = RaD′′ both the single cell and the two-rolls configurations
are possible and the flow can switch over time from one configuration to another if
enough unsteadiness is present. Above the threshold tU/tf = 1 no mean flow can exist
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Figure 4. Phase diagram for the characterization of the mean flow structure: C ′C,
equation (3.1) or (3.2); D′D′′ and D′′D, equation (3.1) or (3.2) but for the distance
h′ = h/2 instead of h (the segment D′D′′ shows the region where the two-rolls configuration
can be formed as an alternative to the single cell); , tw/tf . In the shaded regions no
mean flow is observed. The axes are represented in logarithmic scale.
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Figure 5. Phase diagram for the mean flow structure: and · · · · · , tU /tf ; – – – –,
tw/tf at Pr = 0.7 for gaseous helium/stainless steel and c/h = 0.0025; — · —, boundary for

tU /tf = 1. The relation Nu = 0.088Ra0.32 has been used to draw the diagram.

since any warm coherent current rising vertically loses its heat to the ambient fluid
before it can be significantly convected. Another limit for the existence of a mean
flow is Ra � RaD , at least until further break-ups (never observed) are introduced.

The prediction of the phase diagram of figure 4 has been tested using some results
from the literature; at Pr= 0.7 for cryogenic gaseous helium it can be assumed that
Nu ≈ 0.088Ra0.32 (J. Niemela, personal communication) which plugged into (3.1) yields
the plot of figure 5. From that figure we have RaC = 1.6 × 1010 and RaD = 3.0 × 1012
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Figure 6. The same as figure 5 but for (a) Pr =5: – – – –, water/Plexiglas (with c/h = 0.0125

and Nu =0.088Ra0.32). (b) Pr= 0.022: – – – –, mercury/stainless steel (with c/h =0.005 and

Nu =0.251Pr0.16Ra0.26).

which are consistent with the transitional values observed by Verzicco & Camussi
(2003) and with the bimodal flow behaviour described by Roche et al. (2002).

The same estimates but for Pr = 5 (water) are reported in figure 6(a) which gives
RaC = 1.9 × 1013 and RaD =3.3 × 1015; since experiments in water have never been
performed at Rayleigh number above 1013 observations and measurements have
always shown for the mean flow a single elongated cell (Nikolaenko et al. 2005; Sun
et al. 2005) as predicted by the present model. Although in a slightly different context,
some arguments on the different time scales involved in the experiments in water and
gaseous helium have been given by Roche et al. (2004) where it is also suggested that
the double mean flow structure is more difficult to see in water than in helium.

In the low Prandtl number regime, the Nusselt number depends also on the Prandtl
number (figure 3b) and a fit for the results obtained in liquid metals (Rossby 1969;
Cioni, Ciliberto & Sommeria 1997; Horanyi, Krebs & Müller 1999; Verzicco &
Camussi 1999) for Pr � 0.1 gives Nu= 0.251Pr0.16Ra0.26 which together with
equation (3.2) yields the results of figure 6(b) for mercury (Pr =0.022). In this case the
first intersection occurs at RaC =9.5 × 1014 and the second would be around 1030; this
is consistent with the literature where no indications of the two-rolls configuration
are reported. It should be stressed, however, that this last result should be taken
with caution since, given the reduced slope of the lines for tU/tf in figure 6(b), small
differences in the fit parameters might results in large shifts of the crossings.

Looking at figure 4 we can see that another result of the model is the possibility for
the flow to support both the single-roll and the two-rolls configurations for Ra <RaC .
The switching between the two structures will depend on the flow unsteadiness which
is likely to produce a vertical ascending current with an inhomogeneous temperature
distribution and therefore to trigger the transition. This mechanism is essentially
the same as that suggested by Sreenivasan et al. (2002) and Araujo et al. (2005) in
which the flow unsteadiness could produce a thermal plume much hotter or colder
than the average and this ‘freak’ event triggered wind reversal in a cylindrical cell
of aspect ratio Γ = 1. In the present Γ = 1/2 cylindrical cell it might then happen
that part of the ascending current is released from the lower plate at colder than
the average temperature and it becomes non-buoyant before reaching the upper
plate, thus triggering the transition. However, except for numerical simulations, the
sidewall is never perfectly adiabatic and in particular conditions strong temperature
inhomogeneities in the ascending current could be damped by the heat stored in the
sidewall. Once again we have therefore to compare time scales, which will be tf = δ2

θ /kf

for the fluid and tw = c2/kw for the wall with c and kw , respectively, the thickness
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and the thermal diffusivity of the sidewall. If tw/tf � 1 the fluid adjusts quickly to
the sidewall temperature which, because of its large thermal inertia, tends to stabilize
the flow. In contrast, when tw/tf � 1 the current does not feel the thermal effect of
the sidewall which, having a small heat capacity, produces a negligible perturbation
to the vertical current. The idea that the thermal properties of the sidewall affect the
flow unsteadiness is confirmed by the observations of Sreenivasan et al. (2002) who
observed a change in the statistics of the wind reversals after inserting an insulating
layer of mylar over the entire inner surface of the stainless steel sidewall of their
experimental setup. By using the same estimates as equation (3.1) we can write

tw

tf
=

(
c

h

)2

4A2Ra2β kf

kw

, (3.3)

reported in figures 4, 5 and 6 as a dashed line (for figure 6(b) the estimates of eq-
uation (3.2) have been employed); it is important to note that while the slope of the
line is determined only by the Nu(Ra, Pr) relation, its position in the plot depends
on construction details of the experimental apparatus. The intersection of the curves
for tU/tf and tw/tf (point E) therefore depends on the flow but also on the setup,
and it determines the region where tw/tU < 1 or vice versa. In fact, for a transition
in the mean flow structure to be possible not only must the flow unsteadiness not
be damped by the sidewall but the latter must not act as an ‘anchoring’ device for
the mean flow. In other words, if a plume were sufficiently not to reverse the flow
with an ideal sidewall it could cool down directly by contact with the surface of a
real sidewall. However even if the plume were to hit the upper plate with enough
heat to reverse the flow the same plume might not be strong enough to reverse the
mean flow and at the same time to change the temperature field inside the sidewall.
If the sidewall is not to anchor the mean flow, therefore, its temperature must change
quickly with respect to the turnover time or tw/tU � 1; in figures 4, 5 and 6 this
happens when the Rayleigh number is smaller than RaE .

In figures 5 and 6 some examples of the consequences of this prediction are
reported for the combinations stainless steel/gaseous helium (figure 5), water/Plexiglas
(figure 6a) and stainless steel/mercury (figure 6b). The model suggests that for the wall
thicknesses commonly used in the experiments (c/h = 0.0025) a stainless steel sidewall
does not perturb the flow unsteadiness in gaseous helium up to RaE ≈ 5 × 1012, beyond
the limit for the existence of a coherent mean flow (Ra = RaD). The same estimates
for water and Plexiglas (with c/h = 0.0125), in contrast, yield RaE ≈ 106 implying
that the unsteady dynamics of the mean flow are practically always influenced by the
stabilizing effect of the sidewall. Finally for the mercury and stainless steel, where
c/h = 0.0025, we find RaE ≈ 1014 which is higher than any experiment performed to
date but smaller than RaC , thus suggesting possible effects of the sidewall on the
mean flow.

Partial confirmation of these predictions has been obtained by ad hoc numerical
simulations performed with different values of the Prandtl number and sidewall
properties. Consider first a perfectly adiabatic sidewall, or a wall with zero thickness
c = 0 (and zero heat capacity), which therefore cannot perturb the mean flow dynamics
(RaE −→ ∞). As shown by Oresta, Stringano & Verzicco (2005) the mean flow at
Pr = 0.7 and Ra = 9 × 105 consists preferentially of a single elongated recirculation
although it occasionally splits into two counter-rotating rolls that only last few large-
eddy turnover times and then immediately disappear to give again a unique structure
with a different azimuthal orientation than the original one. This behaviour is shown
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Figure 7. Instantaneous vertical sections of velocity vectors across a mean flow transition
event, Ra=9 × 105 and Pr = 0.7: (a) t = 180, (b) t = 190, (c) t = 200.

by direct flow observations across the transition (compare figure 7 and the arrow in
figure 8a) and by time series of vertical velocity sampled at a fixed point showing
reverse-like features (figure 8a). The same simulation performed for the combination
of gaseous helium and stainless steel gives the results of figure 8(b) with essentially
the same dynamics as that of a perfect sidewall. Similar observations have been
reported at a higher Rayleigh number by Wu & Libchaber (1992) who state that
‘in the Γ = 1/2 cell the large-scale velocity switches direction from time to time’. A
simulation in the same geometry but for water and with a sidewall of Plexiglas of
thickness c/h = 0.0125 gives the results of figure 8(c) indicating the presence essentiall
of a stable elongated structure which is consistent with the threshold RaE ≈ 106 of
figure 6(a). Note that the flow of figure 8(c) was computed at Ra = 6 × 106 that, with
the Prandtl number of water, yielded the same Reynolds number Re=

√
Ra/Pr as

that of figure 8(a, b); the same dynamics, however, has been observed for smaller
values of Ra.

Brown et al. (2005a) report that in a Γ = 1 cylindrical cell filled with water and
with a Plexiglas sidewall two kinds of flow reversals can be found, ‘cessations’ and
‘re-orientations’, the latter being far more probable than the former. In the first case
the flow momentarily stops and then reverses the sense of rotation while in the
second case it never stops rotating and it simply reorients itself by a slow azimuthal
tilting. Comparing the time scale of the single velocity jump of figure 8(c) with those
in 8(a, b) it should be evident that the event in figure 8(c), being slower, should
be a reorientation. On the other hand it should be noted that the present model,
concerning the flow dynamics in a vertical meridional plane, can only make predictions
for the cessations; therefore the reversal of figure 8(c) should not be interpreted as a
discrepancy with the proposed model.

Finally for mercury and stainless steel the sidewall should have negligible influence
on the mean flow dynamics and the results of figure 8(d) confirm the expectation.

It is worth mentioning that the effect of the sidewall conductivity on the flow was
investigated by Ahlers (2001), Roche et al. (2001a), Verzicco (2002), and Niemela &
Sreenivasan (2003), but they focused only on a correction to the heat transfer to
account for the parasite heat current through the lateral wall. In the present case, the
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Figure 8. Time histories of pointwise samples of vertical velocity at xh = 0.25, r/h = 0.2 and
φ = 0 (axial, radial and azimuthal coordinates). (a) Ra= 9 × 105 and Pr = 0.7, ideal sidewall
(c = 0); (b) Ra= 9 × 105 and Pr = 0.7, sidewall with (c/h)2(kf /kw) = 1.28 × 10−6 (gaseous

helium/stainless steel with a wall thickness c/h = 0.0025); (c) Ra= 6 × 106 and Pr = 5, sidewall
with (c/h)2(kf /kw) = 1.91 × 10−4 (water/Plexiglas with a wall thickness c/h = 0.0125); (d) Ra=
9 × 105 and Pr = 0.022, sidewall with (c/h)2(kf /kw) = 5.58 × 10−6 (mercury/stainless steel with
a wall thickness c/h = 0.0025). The arrow in (a) refers to the time of figure 7.

effect is very different being related to the heat stored in the sidewall and not to the
flux through it. We note, by the way, that the present effect is more subtle since it is
more important in those configurations where the heat transfer correction would be
negligible.

4. Discussion
The relations for tU/tf and tw/tf with the conditions tU/tf = 1 and tw/tf = tU/tf

can be used to draw phase diagrams in the (Ra, Pr)-plane for the mean flow structure
and its dynamics. Three representative cases are shown in figures 9–11 with the plane
divided into four regions depending on the presence of one single roll (1R) or two
rolls (2R) in the mean flow and the unstable (U regions with possible temporary
transitions) or stable (S) character of the recirculations. The shaded regions (NMF)
of figures 9–11 are those where, according to the model, a mean flow is not formed
because thermal plumes are too small or the convection velocity too slow to establish
an organized flow.

Superimposed on the diagrams of figures 9–11 we also show the Ra–Pr values for
some experiments performed in a cylindrical cell of aspect ratio Γ = 1/2. The cryogenic
helium experiments (figure 9), because of the particular experimental technique, are
not performed at constant Pr but one that increases at the highest Ra. The data for two
recent experiments (Niemela et al. 2000; Chavanne et al. 2001) are reported in figure 9
and owing to the different size of the cells the Ra–Pr curves follow different paths.
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Figure 9. Phase diagram for the mean flow structure: regions 1R∗ indicate a single
recirculation, regions 2R∗ two-rolls regions. ∗∗S indicate stable structures, regions ∗∗U unstable
structures. The NMF region is where no mean flow is possible because the recirculation is
too slow for the size of the plume to be significantly convected, while in the NMF2 region no
mean flow is possible because the plumes would be too thin to establish a large–scale flow.
—··—, (c/h)2(kf /kw) = 1.28 × 10−6 (for example gaseous helium/stainless steel with a sidewall
thickness c/h = 0.0025); ∗, experiments by Niemela et al. (2000); ×, experiments by Chavanne
et al. (2001).

In particular the experiment by Niemela et al. (2000) is contained in the 2RS and
NMF regions for Ra > 1011 while that by Chavanne et al. (2001) is at the boundary
between the 1R* and 2R* regions for Ra > 1010 and eventually is contained in the 1RS
region: the fact that the high Rayleigh number parts of the two experiments belong
to different regions of the phase diagram might explain the unreconciled difference
in their heat transfer measurements. In addition, flow bimodality was observed for
the highest values of Ra in the experiment by Chavanne et al. (2001) and by Roche
et al. (2002) in the range 1010 <Ra < 1012 for an experiment whose Ra–Pr points are
shifted about 3 decades to the left of the Ra-axis with respect to those of Chavanne
et al. (2001). Although it might be coincidental, in both cases the Ra–Pr points are
at the boundary between the 1R* and 2R* regions where the present model predicts
the transition of the mean flow structure. As previously mentioned when discussing
figure 4, for Ra � RaC the single recirculation and the two-rolls configuration can
be both supported by the system. This should be particularly true around Ra = RaC

where the strong flow unsteadiness can induce transitions between the two states. In
this context it is possible that the Nusselt number attains two distinct values at the
same Rayleigh number depending on the selected state. Further, if we allowed the
system to accommodate a mean flow which is a linear combination of the two basic
states, for a fixed Ra, any Nu value in between the two extrema would be in principle
possible. This would certainly be a course for concern because it would imply that
a Nusselt number value would only make sense if ensemble averaged over different
runs at the same Ra (or over very long time intervals for a single experiment); on the
other hand, at the moment there is no evidence of such a behaviour and therefore it
should be considered only as a conjecture.
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Figure 10. As figure 9 but —··—, (c/h)2(kf /kw) = 1.91 × 10−4 (for example water/plexiglas
with a sidewall thickness c/h = 0.0125), —— with ∗, experiments by Nikolaneko et al. (2004);
—— with �, experiments by Sun et al. (2005); - - - - �, experiments by Chillà et al. (2004).

The water experiments have generally been performed at mean temperatures of
T =50 ◦C (Pr = 4–5) and in cells of heights h = 0.4–0.5 m, yielding Ra � 5 × 1011 and,
according to figure 10, all contained in the 1 RS region. Only the work by Chillà
et al. (2004) at a mean temperature of T = 80 ◦C (Pr = 2) and in a cell with h = 1 m
crosses a 2R* region with the transition occurring at Ra = 8.5 × 1011, which is very
close to the value Ra ≈ 1012 reported by them for the onset of bimodal behaviour†.

The results for the low Prandtl number regime (Pr � 0.1) are reported in figure 11
with the separation between regions S and U drawn for the stainless steel and
mercury combination. It can be seen that, to date, even the highest Rayleigh number
experiments (Glazier et al. 1999) are all contained in the 1RU region which is
consistent with the absence of flow bimodality reported for this fluid.

It is worth mentioning that the diagrams have been drawn only for Pr � 0.5 and
Pr � 0.1 since in between these values none of the two Nu(Ra, Pr) correlations used
in this paper apply. In addition the Nu vs. Pr relation sketched in figure 3(b) in reality
does not have a sharp edge around Prth but rather it presents a smooth transition
between the increasing and constant branches. In this context, all the curvatures and
details given by Grossmann & Lohse (2001) clearly become non-negligible, making
the present model unrealistic.

A word of warning should also be given for the high Rayleigh number part of
the phase diagram of figure 9 in connection with the ultimate regime proposed by
Kraichnan (1962). In particular, in Kraichnan’s scenario the boundary layer becomes
turbulent because of the action of the largest eddies which are in fact the mean flow.
Figure 9, however, indicates that for moderate Prandtl numbers at high enough Ra
the system must enter the no-mean-flow state therefore suggesting that Kraichnan’s
regime is not accessible to the present Γ = 1/2 cell unless one has very high Prandtl

† The boundary between regions U and S of figure 10 does not apply to the experiment by
Chillà et al. (2004) since in that case the sidewall was made of stainless steel and not of Plexiglas.
Nevertheless this boundary is independent of the position of regions 1R and 2R and the above
conclusions are not altered.
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Figure 11. As figure 9 but —··—, (c/h)2(kf /kw) = 5.58 × 10−6 (for example mercury/stainless
steel with a sidewall thickness c/h = 0.0025); ——— with ∗, experiments by Glazier et al. (1999).

numbers in which case the regime reduces to that of Howard (1972) (Nu ∼ Ra1/3).
On the other hand at moderate Pr when a large-scale flow is absent the thermal
boundary layers at the upper and lower plates are not connected and, according to
Malkus (1954) this should again give Nu ∼ Ra1/3. More specifically, as suggested by
one of the referees, the line separating regions 2RS from NMF in figure 9 is essentially
indistinguishable from the various lines in the Ra–Pr space for the ratio of the thermal
and viscous boundary layer thicknesses equal to unity (see figure 11 of Niemela &
Sreenivasan 2003), a necessary pre-condition for Kraichnan’s regime to exist. Indirect
evidence for the above arguments is given by the experiment of Niemela et al. (2000)
who, having excluded the non-Boussinesq points and having corrected the remaining
data for the sidewall and plate effects, deduced the relation Nu= 0.088Ra0.32 (J.
Niemela, personal communication) which is quite close to Nu ∼ Ra1/3. On the other
hand, Roche et al. (2001) obtained some evidence of Kraichnan’s regime by using
non-smooth plates with grooves smaller than the thermal boundary layer thickness.
In this case the boundary layers could be made turbulent with the help of the surface
roughness and the new regime could be attained before crossing the 2RS–NMF
boundary.

It should be noted that critical bifurcations induced by a particular value of the cell
aspect ratio Γ are not a peculiarity of the present problem only. In fact Charlson &
Sani (1971) reported an analogous phenomenon at the onset of convection; in
particular they observed that for an aspect ratio smaller than γ = 0.61 and γ =0.81,
respectively for conducting and insulating sidewalls, the structure of the large-scale
flow breaks the rotational symmetry (axisymmetric flow) to form a large asymmetric
recirculation completely filling the cell. The analogy, however, should not be pushed
too far since in the paper by Charlson & Sani (1971) the aspect ratio is defined
with the radius of the cylinder γ =R/h while in the present paper it is defined with
the diameter Γ = d/h. This implies that the critical value γ =0.81 corresponds to
Γ =1.62 (as directly verified by Oresta et al. 2005) which is not close to the present
value Γ = 0.5.

Before concluding this paper we wish to stress that the various boundaries between
the regions should be considered only as indicative since several numerical prefactors
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could be used to tune the model. For example the ascending velocity of the side
currents could be only a fraction (possibly Pr-dependent) of the free-fall velocity
and their thickness a multiple of δθ . Similarly, the Nu(Ra, Pr) relations could have
different exponents and prefactors and the thresholds for the relations tU/tf and
tw/tf could be adjusted instead of being strictly equal to one. In this study, however,
we have deliberately decided not to use tunable constants in order to check if the
raw arguments were able to capture the essential flow physics; the fact that the
simplest version of the model agrees with the published literature seems to confirm
our expectations.

The paper was conceived after presenting a paper at the ‘High Rayleigh number
convection Workshop’ held on March 2005 at the JNCASR in Bangalore (India)
and the authors are grateful to all the participants. Particular thanks go to A. B.
Puthenveettil for his comments and suggestions. Thanks also to Professor J. Niemela
and Drs F. Chillá and P. Roche for providing some experimental data and suggestions.
The paper was prepared with the financial support of CEMeC of Politecnico di Bari.
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